Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genet Med ; 26(3): 101041, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054406

RESUMO

PURPOSE: The main objective of this study was to assess clinical features and genome-wide DNA methylation profiles in individuals affected by intellectual developmental disorder, autosomal dominant 21 (IDD21) syndrome, caused by variants in the CCCTC-binding factor (CTCF) gene. METHODS: DNA samples were extracted from peripheral blood of 16 individuals with clinical features and genetic findings consistent with IDD21. DNA methylation analysis was performed using the Illumina Infinium Methylation EPIC Bead Chip microarrays. The methylation levels were fitted in a multivariate linear regression model to identify the differentially methylated probes. A binary support vector machine classification model was constructed to differentiate IDD21 samples from controls. RESULTS: We identified a highly specific, reproducible, and sensitive episignature associated with CTCF variants. Six variants of uncertain significance were tested, of which 2 mapped to the IDD21 episignature and clustered alongside IDD21 cases in both heatmap and multidimensional scaling plots. Comparison of the genomic DNA methylation profile of IDD21 with that of 56 other neurodevelopmental disorders provided insights into the underlying molecular pathophysiology of this disorder. CONCLUSION: The robust and specific CTCF/IDD21 episignature expands the growing list of neurodevelopmental disorders with distinct DNA methylation profiles, which can be applied as supporting evidence in variant classification.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiências do Desenvolvimento/genética , Metilação de DNA/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Síndrome
3.
Epilepsia Open ; 8(4): 1300-1313, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37501353

RESUMO

OBJECTIVE: The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS: We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an "epilepsy group" or "non-epilepsy group". Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS: We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7-13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months - 20 years), and the majority had generalized onset seizures (57.7%) with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE: Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Epilepsia Generalizada , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Lactente , Anormalidades Múltiplas/etiologia , Anormalidades Múltiplas/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Doenças do Desenvolvimento Ósseo/etiologia , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/etiologia , Anormalidades Dentárias/genética , Fácies , Proteínas Repressoras/genética , Fatores de Transcrição
4.
Clin Genet ; 104(2): 186-197, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37165752

RESUMO

POU3F3 variants cause developmental delay, behavioral problems, hypotonia and dysmorphic features. We investigated the phenotypic and genetic landscape, and genotype-phenotype correlations in individuals with POU3F3-related disorders. We recruited unpublished individuals with POU3F3 variants through international collaborations and obtained updated clinical data on previously published individuals. Trio exome sequencing or single exome sequencing followed by segregation analysis were performed in the novel cohort. Functional effects of missense variants were investigated with 3D protein modeling. We included 28 individuals (5 previously published) from 26 families carrying POU3F3 variants; 23 de novo and one inherited from an affected parent. Median age at study inclusion was 7.4 years. All had developmental delay mainly affecting speech, behavioral difficulties, psychiatric comorbidities and dysmorphisms. Additional features included gastrointestinal comorbidities, hearing loss, ophthalmological anomalies, epilepsy, sleep disturbances and joint hypermobility. Autism, hearing and eye comorbidities, dysmorphisms were more common in individuals with truncating variants, whereas epilepsy was only associated with missense variants. In silico structural modeling predicted that all (likely) pathogenic variants destabilize the DNA-binding region of POU3F3. Our study refined the phenotypic and genetic landscape of POU3F3-related disorders, it reports the functional properties of the identified pathogenic variants, and delineates some genotype-phenotype correlations.


Assuntos
Transtorno Autístico , Epilepsia , Deficiência Intelectual , Humanos , Criança , Deficiência Intelectual/genética , Transtorno Autístico/genética , Fenótipo , Epilepsia/genética , Mutação de Sentido Incorreto/genética , Deficiências do Desenvolvimento/genética , Fatores do Domínio POU/genética
5.
Elife ; 112022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250618

RESUMO

Background: De novo variants (DNVs) are currently not routinely evaluated as part of diagnostic whole exome sequencing (WES) analysis in patients with suspected inborn errors of immunity (IEI). Methods: This study explored the potential added value of systematic assessment of DNVs in a retrospective cohort of 123 patients with a suspected sporadic IEI that underwent patient-parent trio-based WES. Results: A (likely) molecular diagnosis for (part) of the immunological phenotype was achieved in 12 patients with the diagnostic in silico IEI WES gene panel. Systematic evaluation of rare, non-synonymous DNVs in coding or splice site regions led to the identification of 14 candidate DNVs in genes with an annotated immune function. DNVs were found in IEI genes (NLRP3 and RELA) and in potentially novel candidate genes, including PSMB10, DDX1, KMT2C, and FBXW11. The FBXW11 canonical splice site DNV was shown to lead to defective RNA splicing, increased NF-κB p65 signalling, and elevated IL-1ß production in primary immune cells extracted from the patient with autoinflammatory disease. Conclusions: Our findings in this retrospective cohort study advocate the implementation of trio-based sequencing in routine diagnostics of patients with sporadic IEI. Furthermore, we provide functional evidence supporting a causal role for FBXW11 loss-of-function mutations in autoinflammatory disease. Funding: This research was supported by grants from the European Union, ZonMW and the Radboud Institute for Molecular Life Sciences.


Assuntos
Exoma , Doenças Hereditárias Autoinflamatórias , Humanos , Sequenciamento do Exoma , Estudos Retrospectivos , Análise de Sequência de DNA , Doenças Hereditárias Autoinflamatórias/genética
6.
Front Immunol ; 12: 780134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992599

RESUMO

Objective: Inborn errors of immunity (IEI) are a heterogeneous group of disorders, affecting different components of the immune system. Over 450 IEI related genes have been identified, with new genes continually being recognized. This makes the early application of next-generation sequencing (NGS) as a diagnostic method in the evaluation of IEI a promising development. We aimed to provide an overview of the diagnostic yield and time to diagnosis in a cohort of patients suspected of IEI and evaluated by an NGS based IEI panel early in the diagnostic trajectory in a multicenter setting in the Netherlands. Study Design: We performed a prospective observational cohort study. We collected data of 165 patients with a clinical suspicion of IEI without prior NGS based panel evaluation that were referred for early NGS using a uniform IEI gene panel. The diagnostic yield was assessed in terms of definitive genetic diagnoses, inconclusive diagnoses and patients without abnormalities in the IEI gene panel. We also assessed time to diagnosis and clinical implications. Results: For children, the median time from first consultation to diagnosis was 119 days versus 124 days for adult patients (U=2323; p=0.644). The median turn-around time (TAT) of genetic testing was 56 days in pediatric patients and 60 days in adult patients (U=1892; p=0.191). A definitive molecular diagnosis was made in 25/65 (24.6%) of pediatric patients and 9/100 (9%) of adults. Most diagnosed disorders were identified in the categories of immune dysregulation (n=10/25; 40%), antibody deficiencies (n=5/25; 20%), and phagocyte diseases (n=5/25; 20%). Inconclusive outcomes were found in 76/165 (46.1%) patients. Within the patient group with a genetic diagnosis, a change in disease management occurred in 76% of patients. Conclusion: In this cohort, the highest yields of NGS based evaluation for IEI early in the diagnostic trajectory were found in pediatric patients, and in the disease categories immune dysregulation and phagocyte diseases. In cases where a definitive diagnosis was made, this led to important disease management implications in a large majority of patients. More research is needed to establish a uniform diagnostic pathway for cases with inconclusive diagnoses, including variants of unknown significance.


Assuntos
Testes Genéticos/estatística & dados numéricos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Técnicas de Diagnóstico Molecular/estatística & dados numéricos , Doenças da Imunodeficiência Primária/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Diagnóstico Precoce , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Prevalência , Doenças da Imunodeficiência Primária/epidemiologia , Doenças da Imunodeficiência Primária/genética , Estudos Prospectivos , Fatores de Tempo , Adulto Jovem
7.
Neurogenetics ; 22(1): 87-94, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32939676

RESUMO

Individuals harboring pathogenic variants in ARHGEF9, encoding an essential submembrane protein for gamma-aminobutyric acid (GABA)-ergic synapses named collybistin, show intellectual disability (ID), facial dysmorphism, behavioral disorders, and epilepsy. Only few affected females carrying large chromosomal rearrangements involving ARHGEF9 have been reported so far. Through next-generation sequencing (NGS)-based panels, we identified two single nucleotide variants (SNVs) in ARHGEF9 in two females with neurodevelopmental features. Sanger sequencing revealed that these variants were de novo. The X-inactivation pattern in peripheral blood cells was random. We report the first affected females harboring de novo SNVs in ARHGEF9, expanding the genotypic and phenotypic spectrum of ARHGEF9-related neurodevelopmental disorder in females.


Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Adulto , Pré-Escolar , Epilepsia/complicações , Epilepsia/genética , Feminino , Genótipo , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Fenótipo
8.
Eur J Hum Genet ; 29(1): 20-28, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32733070

RESUMO

Dutch genome diagnostic centers (GDC) use next-generation sequencing (NGS)-based diagnostic applications for the diagnosis of primary immunodeficiencies (PIDs). The interpretation of genetic variants in many PIDs is complicated because of the phenotypic and genetic heterogeneity. To analyze uniformity of variant filtering, interpretation, and reporting in NGS-based diagnostics for PID, an external quality assessment was performed. Four main Dutch GDCs participated in the quality assessment. Unannotated variant call format (VCF) files of two PID patient analyses per laboratory were distributed among the four GDCs, analyzed, and interpreted (eight analyses in total). Variants that would be reported to the clinician and/or advised for further investigation were compared between the centers. A survey measuring the experiences of clinical laboratory geneticists was part of the study. Analysis of samples with confirmed diagnoses showed that all centers reported at least the variants classified as likely pathogenic (LP) or pathogenic (P) variants in all samples, except for variants in two genes (PSTPIP1 and BTK). The absence of clinical information complicated correct classification of variants. In this external quality assessment, the final interpretation and conclusions of the genetic analyses were uniform among the four participating genetic centers. Clinical and immunological data provided by a medical specialist are required to be able to draw proper conclusions from genetic data.


Assuntos
Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Doenças da Imunodeficiência Primária/genética , Garantia da Qualidade dos Cuidados de Saúde , Proteínas Adaptadoras de Transdução de Sinal/genética , Tirosina Quinase da Agamaglobulinemia/genética , Proteínas do Citoesqueleto/genética , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Países Baixos , Doenças da Imunodeficiência Primária/diagnóstico
9.
Nat Commun ; 11(1): 5797, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199684

RESUMO

ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development.


Assuntos
Proteínas Argonautas/genética , Células Germinativas/metabolismo , Mutação/genética , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Interferência de RNA , Adolescente , Animais , Proteínas Argonautas/química , Criança , Pré-Escolar , Análise por Conglomerados , Dendritos/metabolismo , Fibroblastos/metabolismo , Inativação Gênica , Células HEK293 , Hipocampo/patologia , Humanos , Camundongos , Simulação de Dinâmica Molecular , Neurônios/metabolismo , Fosforilação , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Ratos , Transcriptoma/genética
10.
Clin Chem ; 66(4): 525-536, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176780

RESUMO

BACKGROUND: Monogenic autoinflammatory diseases are caused by pathogenic variants in genes that regulate innate immune responses, and are characterized by sterile systemic inflammatory episodes. Since symptoms can overlap within this rapidly expanding disease category, accurate genetic diagnosis is of the utmost importance to initiate early inflammation-targeted treatment and prevent clinically significant or life-threatening complications. Initial recommendations for the genetic diagnosis of autoinflammatory diseases were limited to a gene-by-gene diagnosis strategy based on the Sanger method, and restricted to the 4 prototypic recurrent fevers (MEFV, MVK, TNFRSF1A, and NLRP3 genes). The development of best practices guidelines integrating critical recent discoveries has become essential. METHODS: The preparatory steps included 2 online surveys and pathogenicity annotation of newly recommended genes. The current guidelines were drafted by European Molecular Genetics Quality Network members, then discussed by a panel of experts of the International Society for Systemic Autoinflammatory Diseases during a consensus meeting. RESULTS: In these guidelines, we combine the diagnostic strength of next-generation sequencing and recommendations to 4 more recently identified genes (ADA2, NOD2, PSTPIP1, and TNFAIP3), nonclassical pathogenic genetic alterations, and atypical phenotypes. We present a referral-based decision tree for test scope and method (Sanger versus next-generation sequencing) and recommend on complementary explorations for mosaicism, copy-number variants, and gene dose. A genotype table based on the 5-category variant pathogenicity classification provides the clinical significance of prototypic genotypes per gene and disease. CONCLUSIONS: These guidelines will orient and assist geneticists and health practitioners in providing up-to-date and appropriate diagnosis to their patients.


Assuntos
Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Desaminase/genética , Proteínas do Citoesqueleto/genética , Testes Genéticos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Adaptadora de Sinalização NOD2/genética , Guias de Prática Clínica como Assunto , Diagnóstico Pré-Natal , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
11.
Nucleic Acids Res ; 48(2): 770-787, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799629

RESUMO

Variants in ribosomal protein (RP) genes drive Diamond-Blackfan anemia (DBA), a bone marrow failure syndrome that can also predispose individuals to cancer. Inherited and sporadic RP gene variants are also linked to a variety of phenotypes, including malignancy, in individuals with no anemia. Here we report an individual diagnosed with DBA carrying a variant in the 5'UTR of RPL9 (uL6). Additionally, we report two individuals from a family with multiple cancer incidences carrying a RPL9 missense variant. Analysis of cells from these individuals reveals that despite the variants both driving pre-rRNA processing defects and 80S monosome reduction, the downstream effects are remarkably different. Cells carrying the 5'UTR variant stabilize TP53 and impair the growth and differentiation of erythroid cells. In contrast, ribosomes incorporating the missense variant erroneously read through UAG and UGA stop codons of mRNAs. Metabolic profiles of cells carrying the 5'UTR variant reveal an increased metabolism of amino acids and a switch from glycolysis to gluconeogenesis while those of cells carrying the missense variant reveal a depletion of nucleotide pools. These findings indicate that variants in the same RP gene can drive similar ribosome biogenesis defects yet still have markedly different downstream consequences and clinical impacts.


Assuntos
Anemia de Diamond-Blackfan/genética , Processamento Pós-Transcricional do RNA/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Regiões 5' não Traduzidas/genética , Adolescente , Adulto , Anemia de Diamond-Blackfan/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Criança , Células Eritroides , Feminino , Humanos , Masculino , Mutação/genética , Precursores de RNA/genética , RNA Mensageiro/genética , Sequenciamento do Exoma
12.
Brain ; 142(9): 2631-2643, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31334757

RESUMO

Marked by incomplete division of the embryonic forebrain, holoprosencephaly is one of the most common human developmental disorders. Despite decades of phenotype-driven research, 80-90% of aneuploidy-negative holoprosencephaly individuals with a probable genetic aetiology do not have a genetic diagnosis. Here we report holoprosencephaly associated with variants in the two X-linked cohesin complex genes, STAG2 and SMC1A, with loss-of-function variants in 10 individuals and a missense variant in one. Additionally, we report four individuals with variants in the cohesin complex genes that are not X-linked, SMC3 and RAD21. Using whole mount in situ hybridization, we show that STAG2 and SMC1A are expressed in the prosencephalic neural folds during primary neurulation in the mouse, consistent with forebrain morphogenesis and holoprosencephaly pathogenesis. Finally, we found that shRNA knockdown of STAG2 and SMC1A causes aberrant expression of HPE-associated genes ZIC2, GLI2, SMAD3 and FGFR1 in human neural stem cells. These findings show the cohesin complex as an important regulator of median forebrain development and X-linked inheritance patterns in holoprosencephaly.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coesinas
13.
Genome Med ; 11(1): 38, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31203817

RESUMO

BACKGROUND: Diagnosis of primary immunodeficiencies (PIDs) is complex and cumbersome yet important for the clinical management of the disease. Exome sequencing may provide a genetic diagnosis in a significant number of patients in a single genetic test. METHODS: In May 2013, we implemented exome sequencing in routine diagnostics for patients suffering from PIDs. This study reports the clinical utility and diagnostic yield for a heterogeneous group of 254 consecutively referred PID patients from 249 families. For the majority of patients, the clinical diagnosis was based on clinical criteria including rare and/or unusual severe bacterial, viral, or fungal infections, sometimes accompanied by autoimmune manifestations. Functional immune defects were interpreted in the context of aberrant immune cell populations, aberrant antibody levels, or combinations of these factors. RESULTS: For 62 patients (24%), exome sequencing identified pathogenic variants in well-established PID genes. An exome-wide analysis diagnosed 10 additional patients (4%), providing diagnoses for 72 patients (28%) from 68 families altogether. The genetic diagnosis directly indicated novel treatment options for 25 patients that received a diagnosis (34%). CONCLUSION: Exome sequencing as a first-tier test for PIDs granted a diagnosis for 28% of patients. Importantly, molecularly defined diagnoses indicated altered therapeutic options in 34% of cases. In addition, exome sequencing harbors advantages over gene panels as a truly generic test for all genetic diseases, including in silico extension of existing gene lists and re-analysis of existing data.


Assuntos
Sequenciamento do Exoma/métodos , Testes Genéticos/métodos , Doenças da Imunodeficiência Primária/genética , Adolescente , Adulto , Pré-Escolar , Feminino , Testes Genéticos/normas , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Doenças da Imunodeficiência Primária/diagnóstico , Sensibilidade e Especificidade , Sequenciamento do Exoma/normas
14.
Genet Med ; 21(12): 2723-2733, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31239556

RESUMO

PURPOSE: Pathogenic variants in the chromatin organizer CTCF were previously reported in seven individuals with a neurodevelopmental disorder (NDD). METHODS: Through international collaboration we collected data from 39 subjects with variants in CTCF. We performed transcriptome analysis on RNA from blood samples and utilized Drosophila melanogaster to investigate the impact of Ctcf dosage alteration on nervous system development and function. RESULTS: The individuals in our cohort carried 2 deletions, 8 likely gene-disruptive, 2 splice-site, and 20 different missense variants, most of them de novo. Two cases were familial. The associated phenotype was of variable severity extending from mild developmental delay or normal IQ to severe intellectual disability. Feeding difficulties and behavioral abnormalities were common, and variable other findings including growth restriction and cardiac defects were observed. RNA-sequencing in five individuals identified 3828 deregulated genes enriched for known NDD genes and biological processes such as transcriptional regulation. Ctcf dosage alteration in Drosophila resulted in impaired gross neurological functioning and learning and memory deficits. CONCLUSION: We significantly broaden the mutational and clinical spectrum ofCTCF-associated NDDs. Our data shed light onto the functional role of CTCF by identifying deregulated genes and show that Ctcf alterations result in nervous system defects in Drosophila.


Assuntos
Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Transtornos do Neurodesenvolvimento/genética , Animais , Criança , Cromatina/genética , Cromatina/metabolismo , Deficiências do Desenvolvimento/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Humanos , Deficiência Intelectual/genética , Masculino , Mutação/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/metabolismo , Fatores de Transcrição/genética , Sequenciamento do Exoma/métodos , Adulto Jovem
15.
Nat Commun ; 10(1): 2837, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253775

RESUMO

The diagnostic yield of exome and genome sequencing remains low (8-70%), due to incomplete knowledge on the genes that cause disease. To improve this, we use RNA-seq data from 31,499 samples to predict which genes cause specific disease phenotypes, and develop GeneNetwork Assisted Diagnostic Optimization (GADO). We show that this unbiased method, which does not rely upon specific knowledge on individual genes, is effective in both identifying previously unknown disease gene associations, and flagging genes that have previously been incorrectly implicated in disease. GADO can be run on www.genenetwork.nl by supplying HPO-terms and a list of genes that contain candidate variants. Finally, applying GADO to a cohort of 61 patients for whom exome-sequencing analysis had not resulted in a genetic diagnosis, yields likely causative genes for ten cases.


Assuntos
Regulação da Expressão Gênica/fisiologia , Predisposição Genética para Doença , Análise de Sequência de RNA/métodos , Transcriptoma , Bases de Dados de Ácidos Nucleicos , Humanos , Modelos Genéticos , Análise de Componente Principal , Software , Interface Usuário-Computador
16.
Am J Hum Genet ; 101(1): 139-148, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28686853

RESUMO

We report 15 individuals with de novo pathogenic variants in WDR26. Eleven of the individuals carry loss-of-function mutations, and four harbor missense substitutions. These 15 individuals comprise ten females and five males, and all have intellectual disability with delayed speech, a history of febrile and/or non-febrile seizures, and a wide-based, spastic, and/or stiff-legged gait. These subjects share a set of common facial features that include a prominent maxilla and upper lip that readily reveal the upper gingiva, widely spaced teeth, and a broad nasal tip. Together, these features comprise a recognizable facial phenotype. We compared these features with those of chromosome 1q41q42 microdeletion syndrome, which typically contains WDR26, and noted that clinical features are consistent between the two subsets, suggesting that haploinsufficiency of WDR26 contributes to the pathology of 1q41q42 microdeletion syndrome. Consistent with this, WDR26 loss-of-function single-nucleotide mutations identified in these subjects lead to nonsense-mediated decay with subsequent reduction of RNA expression and protein levels. We derived a structural model of WDR26 and note that missense variants identified in these individuals localize to highly conserved residues of this WD-40-repeat-containing protein. Given that WDR26 mutations have been identified in ∼1 in 2,000 of subjects in our clinical cohorts and that WDR26 might be poorly annotated in exome variant-interpretation pipelines, we would anticipate that this disorder could be more common than currently appreciated.


Assuntos
Fácies , Marcha/genética , Haploinsuficiência/genética , Deficiência Intelectual/genética , Proteínas/genética , Convulsões/genética , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Sequência de Bases , Pré-Escolar , Deleção Cromossômica , Feminino , Crescimento e Desenvolvimento/genética , Humanos , Deficiência Intelectual/complicações , Masculino , Mutação/genética , Proteínas/química , Estabilidade de RNA/genética , Convulsões/complicações , Síndrome
17.
Eur J Paediatr Neurol ; 21(2): 396-403, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27913086

RESUMO

INTRODUCTION: Early-onset epileptic encephalopathy caused by biallelic SLC13A5 mutations is characterized by seizure onset in the first days of life, refractory epilepsy and developmental delay. Little detailed information about the brain MRI features is available in these patients. METHODS: Observational study describing the neuro-imaging findings in eight patients (five families) with mutations in the SLC13A5 gene. Seven infants had an MRI in the neonatal period, two had a follow-up MRI at the age of 6 and 18 months and one only at 13 months. One patient had follow-up MRIs at 11 and 16 months and 3 and 6 years of age, but no neonatal MRI. RESULTS: All patients presented with refractory neonatal seizures on the first day of life after an uncomplicated pregnancy and term delivery. Six out of seven infants with a neonatal MRI had a characteristic MRI pattern, with punctate white matter lesions (PWML), which were no longer visible at the age of 6 months, but led to gliotic scarring visible on MRI at the age of 18 months. The same pattern of gliotic scarring was seen on the MRIs of the infant without a neonatal scan. One infant had signal abnormalities in the white matter suspected of PWML on T2WI, but these could not be confirmed on other sequences. CONCLUSION: In infants presenting with therapy resistant seizures in the first days after birth, without a clear history of hypoxic-ischemic encephalopathy, but with PWML on their neonatal MRI, a diagnosis of SCL13A5 related epileptic encephalopathy should be considered.


Assuntos
Encéfalo/patologia , Espasmos Infantis/genética , Espasmos Infantis/patologia , Simportadores/genética , Substância Branca/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Mutação , Neuroimagem , Gravidez
18.
J Clin Invest ; 125(8): 3051-62, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26168268

RESUMO

Here we report inherited dysregulation of protein phosphatase activity as a cause of intellectual disability (ID). De novo missense mutations in 2 subunits of serine/threonine (Ser/Thr) protein phosphatase 2A (PP2A) were identified in 16 individuals with mild to severe ID, long-lasting hypotonia, epileptic susceptibility, frontal bossing, mild hypertelorism, and downslanting palpebral fissures. PP2A comprises catalytic (C), scaffolding (A), and regulatory (B) subunits that determine subcellular anchoring, substrate specificity, and physiological function. Ten patients had mutations within a highly conserved acidic loop of the PPP2R5D-encoded B56δ regulatory subunit, with the same E198K mutation present in 6 individuals. Five patients had mutations in the PPP2R1A-encoded scaffolding Aα subunit, with the same R182W mutation in 3 individuals. Some Aα cases presented with large ventricles, causing macrocephaly and hydrocephalus suspicion, and all cases exhibited partial or complete corpus callosum agenesis. Functional evaluation revealed that mutant A and B subunits were stable and uncoupled from phosphatase activity. Mutant B56δ was A and C binding-deficient, while mutant Aα subunits bound B56δ well but were unable to bind C or bound a catalytically impaired C, suggesting a dominant-negative effect where mutant subunits hinder dephosphorylation of B56δ-anchored substrates. Moreover, mutant subunit overexpression resulted in hyperphosphorylation of GSK3ß, a B56δ-regulated substrate. This effect was in line with clinical observations, supporting a correlation between the ID degree and biochemical disturbance.


Assuntos
Agenesia do Corpo Caloso , Corpo Caloso , Transtornos Mentais , Mutação de Sentido Incorreto , Proteína Fosfatase 2 , Adolescente , Adulto , Agenesia do Corpo Caloso/enzimologia , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Substituição de Aminoácidos , Criança , Pré-Escolar , Corpo Caloso/enzimologia , Corpo Caloso/patologia , Feminino , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Lactente , Masculino , Transtornos Mentais/enzimologia , Transtornos Mentais/genética , Transtornos Mentais/patologia , Pessoa de Meia-Idade , Fosforilação/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
19.
Arthritis Rheumatol ; 66(2): 350-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24504807

RESUMO

OBJECTIVE: Autologous stem cell transplantation (ASCT) induces long-term drug-free disease remission in patients with juvenile idiopathic arthritis. This study was undertaken to further unravel the immunologic mechanisms underlying ASCT by using a mouse model of proteoglycan-induced arthritis (PGIA). METHODS: For initiation of PGIA, BALB/c mice received 2 intraperitoneal injections of human PG in a synthetic adjuvant on days 0 and 21. Five weeks after the first immunization, the mice were exposed to total body irradiation (7.5 Gy) and received (un)manipulated bone marrow (BM) grafts from mice with PGIA. Clinical scores, T cell reconstitution, (antigen-specific) T cell cytokine production, and intracellular cytokine expression were determined following autologous BM transplantation (ABMT). RESULTS: ABMT resulted in amelioration and stabilization of arthritis scores. BM grafts containing T cells and T cell-depleted grafts provided the same clinical benefit, with similar reductions in PG-induced T cell proliferation and the number of PG-specific autoantibodies. In vivo reexposure to PG did not exacerbate disease. Following ABMT, basal levels of disease-associated proinflammatory cytokines (interferon-γ [IFNγ], interleukin-17 [IL-17], and tumor necrosis factor α [TNFα]) were reduced. In addition, restimulation of T cells with PG induced a strong reduction in disease-associated proinflammatory cytokine production. Finally, although the remaining host T cells displayed a proinflammatory phenotype following ABMT, IFNγ, IL-17, and TNFα production by the newly reconstituted donor-derived T cells was significantly lower. CONCLUSION: Taken together, our data suggest that ABMT restores immune tolerance by renewal and modulation of the Teff cell compartment, leading to a strong reduction in proinflammatory (self antigen-specific) T cell cytokine production.


Assuntos
Artrite Experimental/imunologia , Artrite Experimental/terapia , Tolerância Imunológica/fisiologia , Transplante de Células-Tronco , Subpopulações de Linfócitos T/patologia , Linfócitos T/patologia , Animais , Artrite Experimental/induzido quimicamente , Autoenxertos , Transplante de Medula Óssea , Modelos Animais de Doenças , Feminino , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteoglicanas/efeitos adversos , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Fator de Necrose Tumoral alfa/metabolismo
20.
Ann Rheum Dis ; 71(10): 1706-15, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22562976

RESUMO

OBJECTIVES: Peptide-based immune tolerance induction is considered an attractive treatment option for autoimmune diseases. The authors have developed a novel method that can enhance the induction of protective peptide-specific T-cell responses, using a rat arthritis model. The authors focused on the Toll-like receptor 9 ligand CpG, which was shown to stimulate regulatory T-cell proliferation when added to plasmacytoid dendritic cells (pDC) using in-vitro cultures. METHODS: The peptide used is a heat shock protein 60 epitope (p1) that elicits tolerogenic peptide-specific immune responses in human arthritis patients and was recently shown to have protective capacity as a bystander antigen in the rat adjuvant arthritis model. Rats were treated with three nasal doses of p1, CpG or a combination of p1 and CpG. Antigen-presenting cells were studied in nose-draining lymph nodes (mandibular lymph nodes; MLN) after nasal treatment, and T-cell responses were analysed in joint-draining lymph nodes after arthritis induction. RESULTS: Nasal co-administration of p1/CpG significantly augmented the arthritis-protective effect of p1, while CpG treatment alone did not. Co-treatment of p1/CpG increased both the number and activation status of pDC in draining MLN, which was accompanied by amplified p1-specific T-cell proliferation and interleukin (IL)-10 production. During early arthritis, p1-specific IL-10 production was identified at the site of inflammation. P1 and p1/CpG-treated rats showed a greater amount of CD4+FoxP3+ regulatory T cells in the joint-draining lymph nodes, which correlated with lower arthritis scores. CONCLUSIONS: These clinical and immunological data suggest the use of CpG as a potent adjuvant for mucosal peptide-specific immune therapy in arthritis.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Artrite Reumatoide/imunologia , Chaperonina 60/imunologia , Oligodesoxirribonucleotídeos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Administração Intranasal , Animais , Artrite Experimental/imunologia , Chaperonina 60/administração & dosagem , Células Dendríticas/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Ativação Linfocitária/imunologia , Masculino , Oligodesoxirribonucleotídeos/administração & dosagem , Ratos , Ratos Endogâmicos Lew , Linfócitos T Reguladores/imunologia , Receptor Toll-Like 9/agonistas , Vacinas de Subunidades Antigênicas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA